

UCAN TORPEDO® BOLT

DESCRIPTION

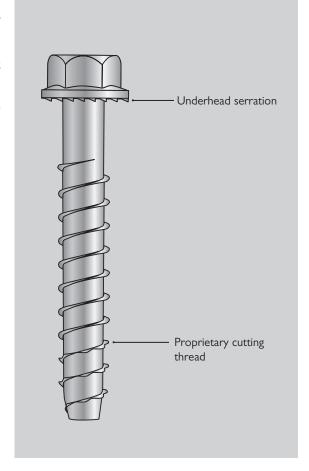
UCAN TORPEDO® BOLT is an excellent anchoring solution for medium duty applications. TORPEDO® is now available in zinc plated and mechanically galvanized carbon steel, as well as types 410 and 316 Stainless Steel. For this reason, TORPEDO® can fulfill the widest variety of applications in the most economical manner. Matched with a standard UCAN ANSI tolerance drill bit, this fastener exhibits consistently high load values. UCAN TORPEDO® BOLT installs quickly leaving the clean appearance of a finished hex washer head on the working surface.

FEATURES

- Available in both mechanically galvanized carbon steel and 316 Stainless
- Grade 316 stainless UTB for high corrosion resistance applications. Also for exterior anchoring in normal environmental condition
- Use with UCAN standard ANSI compliant drill
- Fast installation and reduced edge distance requirements, compared to mechanical expansion anchors.
- One piece fastener with finished hex washer head.
- Unique thread pattern facilitates ease of installation
- Anchor can be set with an impact or manual socket wrench.
- Underhead serrations.
- Removable–Ideal for temporary anchoring applications.
- Reusable- Reusing the anchor reduces the holding power and is not recommended.
- · Anchor size is stamped on head for easy identification and enhanced quality control after anchor Installation.

TYPICAL APPLICATIONS

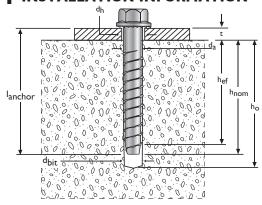
- Racking, Railing, Sill plates, Stadium seating.
- Tilt-up braces, Formwork, Anchoring equipment

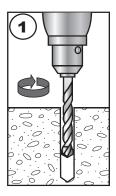

LIMITATIONS

Not recommended for installation into uncured concrete(less than 7 days old).

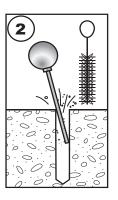
APPROVAL / LISTINGS

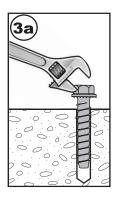
ICC-ES® Listed ESR- 4596 UTB 12212, UTB 123, UTB 124, UTB 125 & UTB 126

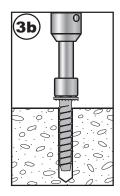

UCAN TORPEDO® BOLT


MATERIAL SPECIFICATIONS

Properties	Carbon Steel	Stainless Steel	Stainless Steel - bimetal			
Anchor body	Heat treated carbon steel	410 hardened stainless steel	316 Stainless steel body with carbon steel cutting up			
Head style	Hex flange head with locking serrations					
Corrosion protection	Mechanically galvanized as per ASTM B-695, Class 65, Type I	410 stainless steel, with RUSPRO® coated	316 Stainless steel, passivated, with yellow zinc plating on cutting tip			


INSTALLATION INFORMATION


I INSTALLATION INSTRUCTIONS


Drill hole to the specified diameter and depth

Blow out dust from the hole

Place anchor in drilled hole

Apply installation torque to set anchor

TECHNICAL DATA FOR CARBON STEEL UTB FOR LIMIT STATE/ STRENGTH DESIGN IN CRACKED AND UNCRACKED CONCRETE

TABLE 1- Torpedo bolt screw anchor instalation information¹

Characteristic	Symb	ol	Nominal Anchor diameter
Nominal Anchor Diameter	da	in (mm)	1/2 (12.7)
Nominal Drill Bit Diameter	d _{bit}	in (mm)	1/2 (12.7)
Nominal Embedment Depth	h _{nom}	in (mm)	3 (76)
Effective Embedment Depth	h _{ef}	in (mm)	2.28 (58)
Minimum Hole Depth	h _{hole}	in (mm)	3 1/4 (83)
Fixture Hole Diameter	d _f	in (mm)	5/8 (15.9)
Maximum Installation Torque	T _{inst,max}	ft.lbs (kN.m)	55 (75)
Maximum impact wrench torque rating	T _{impact.max}	ft.lbs (kN.m)	380 (515)
Minimum Concrete Thickness	h _{min}	in (mm)	4 1/2 (114)
Critical Edge Distance	Cac	in (mm)	4 (102)
Minimum Edge Distance	C _{min}	in (mm)	2 (51)
Minimum Spacing	S _{min}	in (mm)	3 (76)

I The tabulated data is to be used in conjunction with the design criteria given in ACI 318-14 Chapter I7 or ACI 318-11 Appendix D, as applicable.

TABLE 2 - RESISTANCE FACTORS FOR LIMIT STATE DESIGN IN ACCORDANCE WITH CSA A23.3-14, ANNEX D1

Setting information	Symbol	Units	Nominal Anchor Diameter
	•		0.65
Concrete material resistance factor	Фс	_	
Steel material resistance factor	Фѕ	-	0.85
Strength reduction factor for tension, steel failure			
modes	R		0.80
Strength reduction factor for shear, steel failure			0.75
modes	R		0.73
Strength reduction factor for tension, concrete		Cond. A	1.15
failure modes	R	Cond. B	1.00
Strength reduction factor for Shear, concrete		Cond. A	1.15
failure modes	R	Cond. B	1.00
Coefficient for factored concrete breakout in			7
tension, cracked concrete	K	_	/
Modification factor concrete resistance to	Ψ c,N	-	1.4
account uncracked concrete	ΨC,IN		1+1

TABLE 3 - TORPEDO BOLT SCREW ANCHOR DESIGN INFORMATION^{1,2,3,4}

Characteristic	Symb		Nominal Anchor diam	
Nominal Embedment Depth	h _{nom}	in		
'		(mm)	(76) 1	
Anchor Category	d _{bit}	d Chase	'	
Steel Strength in T			147,000	
Minimum specified ultimate strength	futa	psi (N/mm²)	(1,014) 117,600	
Minimum specified yield strength	fy	psi (N/mm²)	(811)	
Effective stress area (screw anchor body)	A _{se}	in ² (mm ²)	0.193 (124.5)	
Steel Strength in Tension	N _{sa}	lb (KN)	24,125 (107.3)	
Strength Reduction Factor for Steel Failure in Tension	Ø	-	0.65	
Steel Strength in Shear	V _{sa}	lb (KN)	6.570 (29.2)	
Steel Strength in Shear, Seismic	$V_{sa,eq}$	lb (KN)	6.570 (29.2)	
Strength Reduction Factor for Steel Failure in Shear	Ø	-	0.60	
Pullout Streng	th in Tens	ion ³		
Pullout Strength in Uncracked Concrete	N _{p,uncr}	lb (KN)	-	
Pullout Strength in Cracked Concrete	N _{p,cr}	Ib (KN)	-	
Pullout Strength in Cracked Concrete, Seismic	$N_{p,eq}$	lb (KN)	-	
Concrete Breakout S	Strength in	Tension		
Effective embedment	h _{er}	im (mm)	2.28 (58)	
Effectiveness Factor for Uncracked Concrete	k _{uncr}	-	27	
Effectiveness Factor for Cracked Concrete	k _{cr}	-	17	
Strength Reduction Factor for Concrete Breakout Strength in Tension	Ø	-	17	
Axial stiffness in service load range in uncracked concrete	β_{uncr}	lb/inch (N/mm)	189,880 (33,250)	
Axial stiffness in service load range in cracked concrete	β_{cr}	lb/inch (N/mm)	101,150 (17,715)	
Concrete Breakout	Strength	in Shear		
Nominal Diameter	do²	in (mm)	1/2 (12.7)	
Load Bearing Length of Anchor	le	in (mm)	2.28 (58)	
Reduction Factor for Concrete Breakout Strength in Shear	Ø	-	0.70	
Concrete Pryout S	Strength in	Shear		
Coefficient for Pryout Strength	k _{cp}	-	1.0	
Reduction Factor for Pryout Strength in Shear	Ø	-	0.70	

The tabulated data is to be used in conjunction with the design criteria given in ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable. ²All values of Ø were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of Ø must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318 Appendix D, as applicable, requirements for Condition A, see ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for the appropriate Ø factor when the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used.

³Where no value is reported for pullout strength, this resistance does not need to be considered.

⁴ For Limit State Design as per CSA A23.3-19 Annex D, material resistance factors (Φ) and resistance modification factor (R) listed in Table 2 shall be used.

TECHNICAL DATA FOR CARBON STEEL UTB FOR ALLOWABLE STREGTH DESIGN IN UNCRACKED CONCRETE

TABLE 4 - Installation Details

Characteristic	Symbol	Unit	Nominal Anchor diameter					
Anchor diameter	da	in.	1/4	3/8	5/8	3/4		
Drill bit diameter	d _{bit}	in.	1/4	3/8	5/8	3/4		
Clearance hole diameter	d _f	in.	3/8	1/2	3/4	7/8		
Installation Torque	T _{inst}	ft-lbs	19	25	85	150		
Nominal embedment	h _{nom}	in.	1-3/4	2 3-3/4	2 3-3/4	3-3/4 4-1/2		
Effective embedment	h _{ef}	in.	1-1/2	1-3/4 3-1/2	1-3/4 3-1/2	3-1/2 4-1/4		
Minimum hole depth	ho	in.	2	2-1/2 4-1/4	2-1/2 4-1/4	4-1/4 5		
Critical edge distance	-	in.	2	3-1/2 5-1/2	3-1/2 5-1/2	5-1/2 6-3/4		
Minimum edge distance	-	in.	1-3/4	1-3/4	1-3/4	1-3/4		
Critical anchor spacing	-	in.	3	4-1/2	4-1/2 7-1/2			
Minimum anchor spacing	-	in.	I	1-1/2	1-1/2 2-1/2			
Head height	-	in.	1/4	3/8	3/8 19/32			
Washer OD	-	in.	1/2	3/4	3/4 I-5/32			
Wrench socket size	-	in.	7/16	9/16	15/16	1-1/8		

TABLE 5 - Ultimate and Allowable Load Data

Anchor	Drill bit	Nominal		Allowable Load Data				UI	timate Lo	ate Load Data		
diameter	diameter	embedment		3000 psi	concrete	6000 psi	concrete	3000 psi	concrete	6000 psi	concrete	
in.	in.	in.	Units	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	
1/4	1/4	1-1/2	lbs	181	430	256	670	725	1719	1025	2680	
17 1	17 1	1-1/2	kN	0.81	1.91	1.14	2.98	3.22	7.65	4.56	11.92	
1/4	1/4	2-1/2	lbs	610	430	863	670	2440	1719	3450	2680	
17 च	17 1	2-172	kN	2.71	1.91	3.84	2.98	10.85	7.65	15.35	11.92	
3/8	3/8	2	lbs	916	892	1295	1742	3664	3567	5182	6967	
370	370		kN	4.07	3.97	5.76	7.75	16.30	15.87	23.05	30.99	
3/8	3/8	3-1/2	lbs	2080	2050	2941	3007	8319	8199	11764	12030	
370	3/6 3/6	3-1/2	kN	9.25	9.12	13.08	13.38	37.00	36.47	52.33	53.51	
5/8	5/8	2	lbs	864	1164	1221	1643	3454	4657	4885	6573	
370	370	2	kN	3.84	5.18	5.43	7.31	15.37	20.72	21.73	29.24	
5/8	5/8	3-1/2	lbs	2324	2389	3287	3168	9296	9557	13147	12670	
370	370	J-1/2	kN	10.34	10.63	14.62	14.09	41.35	42.51	58.48	56.36	
3/4	3/4 3/4 2-1/2	2 1/2	lbs	1078	1569	1525	2254	4313	6276	6099	9015	
3/ T		2-1/2	kN	4.80	6.98	6.78	10.03	19.18	27.92	27.13	40. I	
3/4	3/4	4	lbs	2632	3167	3723	4729	10530	12667	14891	18918	
J/ T	J/ T	7	kN	11.71	14.09	16.56	21.04	46.84	56.35	66.24	84.15	

Note: The data presented in this table is based on independent laboratory testing at critical anchor spacing and edge distance.

PRODUCT ORDERING INFORMATION

Part number	Head style	Anchor size	Drill bit diameter	Wrench socket size	Minimum embedment	Box qty	Casse qty
UTB 14214	hex	1/4 x 2-1/4	1/4	7/16	1-1/4	100	800
UTB 143	hex	1/4 x 3	1/4	7/16	2-1/4	100	800
UTB 38134	hex	3/8 x I-3/4	3/8	9/16	3/4	50	400
UTB 38212	hex	3/8 x 2-1/2	3/8	9/16	1-1/2	50	400
UTB 383	hex	3/8 x 3	3/8	9/16	2	50	400
UTB 384	hex	3/8 x 4	3/8	9/16	3-1/2	50	400
UTB 385	hex	3/8 x 5	3/8	9/16	3-1/2	25	75
UTB 123	hex	1/2 x 3	1/2	3/4	2	50	150
UTB 12212	hex	1/2 x 2-1/2	1/2	3/4	2	50	400
UTB 124	hex	1/2 x 4	1/2	3/4	3-1/2	40	120
UTB 125	hex	1/2 x 5	1/2	3/4	3-1/2	30	90
UTB 583	hex	5/8 x 3	5/8	15/16	2	25	75
UTB 584	hex	5/8 x 4	5/8	15/16	3-1/2	25	75
UTB 585	hex	5/8 x 5	5/8	15/16	3-1/2	20	60
UTB 586	hex	5/8 x 6	5/8	15/16	3-1/2	20	60
UTB 344	hex	3/4 x 4	3/4	1-1/8	2	15	45
UTB 345	hex	3/4 x 5	3/4	1-1/8	3-1/2	15	45
UTB 346	hex	3/4 × 6	3/4	1-1/8	3-1/2	15	45
UTB 347	hex	3/4 x 7	3/4	1-1/8	3-1/2	15	45

Note: 1/2 inch diameter UTB sizes are ICC-ES listed (ESR-4596).

LOAD ADJUSTMENT FACTORS (ALLOWABLE STRESS DESIGN)

Anchor Spacing

Diameter	Critical spacing		Minimun	n Spacing	Reduction Factor				
Diameter	Tension	Shear	Tension Shear		Tension	Shear			
1/4	3"	3"	Ι"	1"					
3/8	4-1/2"	4-1/2"	1-1/2"	1-1/2"					
1/2	6"	6"	2"	2"	0.5	0.7			
5/8	7-1/2"	7-1/2"	2-1/2"	2-1/2"					
3/4	9"	9"	3"	3"					

Edge Distance

Diameter	Critical Edge Distance		Minimum Ed	dge Distance	Reduction Factor		
Diameter	Tension	Shear	Tension	Shear	Tension	Shear	
1/4						1	
3/8	I.5 x h _{ef}		0.8 x h _{ef}	I-3/4"	0.75	0.25	
1/2							
5/8							
3/4							

Note: Reduction factor at critical distances equals 1.0 for edge and spacing distances between critical and minimum distances, use linear interpolation. Reduction factors are cumulative.