

FLO-ROK® FR5MAX INJECTION ADHESIVE ANCHOR

TECHNICAL MANUAL
SECTION 3.3 • PAGE 1 / 16
© 06/2024 UCAN Fastening Products

▶ DESCRIPTION

UCAN FLO-ROK® FR5 MAX is a styrene free epoxy acrylate adhesive suitable for year-round use without preconditioning in temperature ranging from -10°C to over 30°C. This versatile two component, high strength anchoring adhesive, provides stress free fastening and is an excellent choice for anchoring & dowelling. A matching static mixing nozzle, as well as FLO-ROK's low mix ratio sensitivity, ensures thorough, 10:1 mixing of the resin and the hardener. FR5-MAX is available in 2 sizes 10 oz. for small jobs, and 28 oz. that is perfect for high volume applications such as rebar dowelling.

UCAN FLO-ROK® FR5 MAX anchoring adhesive is specifically formulated for continuously threaded steel rod and deformed steel reinforcing bar anchoring to resist static, wind or earthquake (Seismic Design Categories A through F) tension and shear loads in cracked and un-cracked, normal-weight concrete having a specified compressive strength, f'_C of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

The FLO-ROK® FR5 MAX adhesive anchors for horizontal, upward inclined and overhead anchoring application must conform to ACI318-14 or CSA A23.3-14 Annex D requirements.

▶ FEATURES

- IAPMO ER 490
- ACI 318 Category 1 anchor (continous spec. inspection) for cracked & uncracked concrete
- Tested in accordance to AC 308 for long term sustained load at standard and elevated temperature.
- Seismic resistance
- Use friendly, low odour, styrene free & MMA free
- Meets LEED guidelines; low VOC
- Moisture insensitive, non sag formula
- Suitable for damp and water filled holes
- Shelf life 18 months, store cartridge at +5°C to +25°C before use
- Meets CSA A23.3-14, Annex D requirements

► TYPICAL APPLICATIONS

- Rebar dowelling
- Highway and bridge construction
- Machine, crane and hoist installation
- Hollow wall anchoring applications
- Renovations

► LISTING AND APPROVALS

- IAPMO ER 490
- MTO Approved
- MTQ Approved

NSF/ANSI Std 61

(cerficate for use in potable water)

► COMPLIANCE WITH THE FOLLOWING CODES

- 2015, 2012, 2011, 2009, 2003 International Building Code® (IBC)
- 2015, 2012, 2011, 2009, 2003 International Residential Code[®] (IRC)

► LEED® COMPLIANCE

• Credit 4.1 - Low Emitting Materials

► MATERIAL PROPERTIES

TABLE 1 - ANCHOR RODS

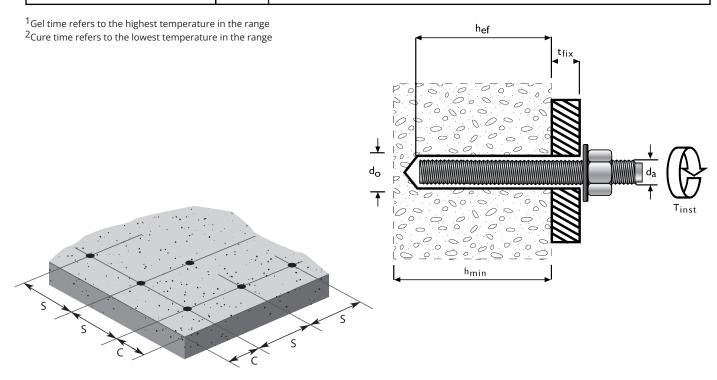
Properties	Symbol	Unit	Value	Test Standard
	f_u	psi	72,500	
Chandard Thursdad Dad / Carban Shaali	⁷ u	МРа	500	ISO 2002 Carada 5 2
Standard Threaded Rod / Carbon Steel ¹	f	psi	58,000	ISO 898 Grade 5.8
	$f_{\mathcal{Y}}$	МРа	400	
	f_{u}	psi	125,000	
Library Channels Through and David / Contract Chanles	^J u	МРа	860	ACTAA A 102 Curda P7
High Strengh Threaded Rod / Carbon Steel ¹	f	psi	105,000	ASTM A 193, Grade B7
	f_{y}	МРа	724	
	f_u	psi	100,00 / 85,000	
	⁷ u	МРа	690 / 585	ASTM F593 CW1/CW2
Stainless steel Threaded Rod ²	f	psi	65,000 / 45,000	(AISI 304/316)
	$f_{\mathcal{Y}}$	МРа	450 / 310	
Carboon Steel Nuts	-	-	-	ASTM A 563
Stainless Steel Nuts	-	-	-	ASTM F 594

¹Rods are considered ductile steel elements in accordance with Sections 4.3.4.1,4.3.4.2 and 4.3.5 of the IAPMO ER490 report

TABLE 2 - CURED EPOXY

Properties	Symbol	Cure Time	Value	Test Standard
	24 hrs.	psi	10,400	
Compressive Strangth	24 nrs.	MPa	72	ASTM D 605 @ 2006/720
Compressive Strength	7 days	psi	11,100	ASTM D 695 @ 20°C/72°
	7 days	MPa	77	
	24 hrs.	psi	1,885	
Tensile Strength	24 1115.	МРа	13	ASTM D 639 @ 2096/729
	7 dava	psi	2,175	ASTM D 638 @ 20°C/72°
	7 days	MPa	15	
Elongation at Break	24 hrs.	%	6.0	ASTM D 638 @ 20°C/72°
. 3	7 days	·	7.0	
	24 hrs.	psi	536,000	
Tanaila Madulua	24 nrs.	GNm-2	3.7	ACTM D (20 @ 2000/720
Tensile Modulus	7 -1	psi	551,000	ASTM D 638 @ 20°C/72°
	7 days	GNm-2	3.7	
Flavoral Strangth	24 5 4 5	psi	4,200	ACTM D 700 @ 2000/720
Flexural Strength	24 hrs	MPa	29	ASTM D 790 @ 20°C/72°

²Rods are considered brittle steel elements in accordance with Sections 4.3.4.1,4.3.4.2 and 4.3.5 of the IAPMO ER490 report.

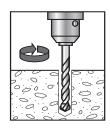


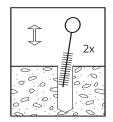
► IN SERVICE TEMPERATURE RANGE

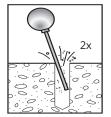
Short Term : -40°C (-40°F) to +80°C (+176°F) Long Term : -40°C (-40°F) to +50°C (+122°F)

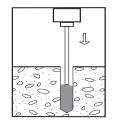
TABLE 3 - CURING TIMES

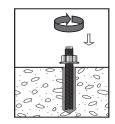
CURE TIME² CONCRETE TEMPERATURE GEL TIME¹ **TEMPÉRATURE D'APPLICATION** *Suggested not verifed -20°C to -10°C (14°F to 41°F) 16 mins 48 hours -10°C to +5°C (14°F to 41°F) 15 mins 12 hours **IMPORTANT!** +5°C to +10°C (41°F to 50°) 10 mins 145 mins · Install stud immediately +10°C to +15°C (50°F to 59°) 8 mins 85 mins after injecting adhesive. Do not disturb stud during +15°C to +20°C (59°F to 68°) 6 mins 75 mins curing time. +20°C to +25°C (68°F to 77°) 5 mins 50 mins +25°C to +30°C (77°F to 86°) 4 mins 40 mins +30°C to +35°C (86°F to 95°) 2 mins 30 mins Cartridge shall be conditioned to a minimum 41°F (+5°C) prior to use *Contact UCAN for site specific installation instructions

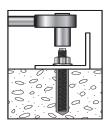

► INSTALLATION

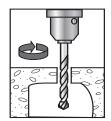

TABLE 4 - ANCHOR RODS

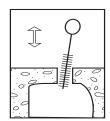

Characteristics		Symbol	Unit		Non	ninal Anch	or Elem	ent Diam	eter	
LINIC Thoras de el Dans	Size	da	inch	3/8	1/2	5/8	3/4	7/8	1	1-1/4
UNC Threaded Bar	drill size	d _O	inch	1/2	9/16	3/4	7/8	1	1-1/8	1-3/8
LIC Dallace	Size	da	inch	#3	#4	#5	#6	#7	#8	#10
US Re-bar	drill size	d _O	inch	9/16	5/8	3/4	1	1-1/8	1-1/4	1-5/8
Matria Thursday Day	Size	da	mm	10	12	16	20	-	24	30
Metric Threaded Rod	drill size	do	mm	12	14	18	22	-	26	35
Metric Re-bar (CAN)	Size	М	-	10M	-	15M	20M	-	25M	30M
plain	drill size	do	inch	9/16	-	3/4	7/8	-	1-1/4	1-1/2
Metric Re-bar (CAN)		М	-	10M	-	15M	20M	-	25M	30M
hot-dip galvanized		d _O	inch	5/8	-	7/8	1	-	1-1/4	1-1/2
Maximum Tightening Torqu	ie	T _{inst}	ft-lb	15	30	60	100	125	150	200
5 1 1 1 1 1 2		hef, _{min}		2-3/8	2-3/4	3-1/8	3-3/4	4	4	5
Embedment Depth Range		hef, _{max}	inch	7-1/2	10	12-1/2	15	17-1/2	20	25
Minimum Concrete Thickne	ss	h _{min}	inch				2.0 h _{ef}			
Critical Edge Distance	Critical Edge Distance C _{ac} inch See Section 3.1.10. (IAPMO ER 490)					90)				
Minimum Edge Distance		C _{min}	inch				0.5 h _{ef}			
Minimum Anchor Spacing		S _{min}	inch				0.5 h _{ef}			

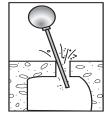

For SI: 1 inch = 25.4 mm, 1ft.lb = 1.356 N.m

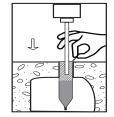

SOLID CONCRETE / MASONRY APPLICATIONS











HOLLOW CONCRETE BLOCK / MASONRY APPLICATIONS



NOTE:

- Clean hole thoroughly by using nylon brush and blow-out bulb or compressed air (65 80 psi)
- Always dispense about 1 oz. FLO ROK to the side, prior to injecting it into the clean hole, to assure uniform mixing indicated by a consistent dark grey colour.
- At a minimum, half fill the hole starting from the bottom up by slowly withdrawing the nozzle. (solid installation) Fill the screen fully starting from the bottom by slowly withdrawing the nozzle. (hollow installation)
- Mark embedment depth on the threaded rod (rebar) prior to installation, and insert the rod (rebar) turning it slowly until it reaches the
 bottom of the hole (depth mark is flush with the surface). Remove all overflow at the surface around he rod (rebar) prior to placing the
 fixture over the anchor.
- · Observe curing time. The installed anchor must not be disturbed or loaded before the specified curing time has elapsed.

STRENGTH DESIGN

Strength design shall be in accordance with IAPMO ER 490 section 3.2.1 and 3.2.2.

Interaction of Tensile and Shear Forces: For designs that include combined tension and shear forces, the interaction of the tension and shear loads must be calculated in accordance with IAPMO ER 490 Section 3.3.2

► LIMIT STATE DESIGN (CSA A23.3-14, ANNEX D)

The design strength of anchors in Limit State Design (Canada) shall comply with CSA A23.3-14, Annex D. Design parameters are provided in Tables 6 through 12. Strength Reduction Factors (R) and Material Resistance Factors (Φ) are provided in Table 5. The requirements for member thickness edge distance and spacing shown in Table must apply. For designs that include tension and shear forces, the interaction of the loads must be calculated in accordance with CSA A23.3-14, Annex D.8

TABLE 5 - RESISTANCE FACTORS FOR LIMIT STATE DESIGN IN ACCORDANCE WITH CSA A23.3-14, ANNEX D

				Nom	inal Ancho	or Eleme	nt Diamo	eter (in.)
Characteristics	Symbol	Unit	3/8" 1/2"		5/8"	3/4" 7/8" 1		1"	1-1/4"
			10M	15M	20M	2!	5M	30	
Concrete material resistance factor (dry concrete)	$\Phi_{\mathcal{C}}$	-				0.65			
Steel material resistance factor	ϕ_{S}	-				0.85			
Strength reduction factor for tension, steel failure modes (carbon and stainless steel threaded rod)	R	-				0.80			
Strength reduction factor for tension, steel failure modes (reinforcing bar)	R	-				0.70			
Strength reduction factor for shear, steel failure modes (carbon and stainless steel threaded rod)	R	-				0.75			
Strength reduction factor for shear, steel failure modes (reinforcing bar)	R	-				0.65			
Strength modification factor for tension, concrete failure modes	R	Cond. A*	1.15						
concrete failure modes		Cond. B*				1.00			
Strength modification factor for Shear, concrete failure modes	R	Cond. A*	1.15						
concrete failure modes		Cond. B*				1.00			

^{*} Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member except where pullout or pryout resistance governs. *Condition B applies where such supplementary reinforcement is not provided or where pullout or pryout strength governs.

TABLE 6 - STEEL DESIGN INFORMATION FOR FRACTIONAL CARBON STEEL AND STAINLESS STEEL THREADED ROD1,2,3,4

	Characteristic	Symbol	Units			Nomina	al Rod Dia	ameter			
	Nominal Size	da	inch	3/8	1/2	5/8	3/4	7/8	1	1-1/4	
	Stress Area ¹	Ase	in.2	0.0775	0.1419	0.226	0.334	0.462	0.606	0.969	
	Reduction Factor for Tension Steel Failure ^{3,4}	Ø	-		0.75						
l Rod	Strength Reduction Factor for Shear Steel Failure ^{3,4}	Ø	-				0.65				
Threaded	Reduction for Seismic Shear	a _{V,seis}	-	0.73	0.73	0.67	0.67		0.61	0.46	
Ē	Tension Resistance of Carbon Steel	N _{sa}	lb	5,620	10,290	16,385	24,250	33.475	43,910	70,260	
Steel	ISO 898-1 Class 5.8		(kN)	(25.0)	(45.8)	(72.9)	(107.9)	(148.9)	(195.3)	(312.5)	
	Tension Resistance of Carbon Steel	N _{sa}	lb	9,690	17,740	28,250	41,750	57,750	75,750	121,125	
Carbon	ASTM A193 B7		(kN)	(43.1)	(78.9)	(125.7)	(185.7)	(256.9)	(337.0)	(538.8)	
Car	Shear Resistance of Carbon Steel	V_{Sa}	lb	2,810	6,175	9,830	14,550	20,085	26,345	42,155	
	ISO 898-1 Class 5.8		(kN)	(12.5)	(27.5)	(43.7)	(64.7)	(89.3)	(117.2)	(187.5)	
	Shear Resistance of Carbon Steel	V_{Sa}	lb	4,845	10,645	16,950	25,050	34,650	45,450	72,675	
	ASTM A193 B7		(kN)	(21.6)	(47.4)	(75.4)	(111.4)	(154.1)	(202.2)	(323.3)	
	Strength Reduction Factor for Tension Steel Failure ^{3,4}	Ø	-								
	Strength Reduction Factor for Shear Steel Failure ^{3,4}	Ø	-								
	Tension Resistance of Stainless Steel	Nsa	lb	7,750	14,190	22,600					
	ASTM F593 CW1		(kN)	(34.5)	(63.1)	(100.5)					
	Tension Resistance of Stainless Steel	N _{Sa}	lb				28,390	39,270	51,510	82,365	
	ASTM F593 CW2		(kN)				(126.3)	(174.7)	(229.1)	(366.4)	
Rod	Tension Resistance of Stainless Steel ASTM F593 SH1	N _{Sa}	lb (kN)	8,915 (39.7)	16,320 (72.6)	25,990 (115.6)					
eaded	Tension Resistance of Stainless Steel ASTM F593 SH2	N _{Sa}	lb (kN)				35,070 (156.0)	48,510 (215.8)	63,630 (283.0		
Steel Threaded	Tension Resistance of Stainless Steel ASTM F593 SH3	Nsa	lb (kN)							92,055 (409.5)	
tainless Sto	Shear Resistance of Stainless Steel ASTM F593 CW1	V _{sa}	Ib (kN)	3,875 (17.2)	7,095 (31.6)	11,300 (50.3)					
Stain	Shear Resistance of Stainless Steel	V _{sa}	lb				14,195	19,635	25,755	41,185	
	ASTM F593 CW2 Shear Resistance of Stainless Steel	V _{sa}	(kN)	4,455	9,790	15,595	(63.1)	(87.3)	(114.6)	(183.2)	
	ASTM F593 SH1	*SU	(kN)	(19.8)	(43.5)	(69.4)					
	Shear Resistance of Stainless Steel ASTM F593 SH2	V _{sa}	lb (kN)				17,535 (78.0)	24,255 (107.9)	31,815 (141.5)		
	Shear Resistance of Stainless Steel ASTM F593 SH3	V _{sa}	lb (kN)							46,030 (204.8)	

For SI: 1 inch = 25.4 mm, 1 in.2 = 645.16 mm2, 1 lb = 0.004448 kN

¹ Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-14 Eq. (17.4.1.2) and Eq. (17.5.1.2b) or ACI 318-11 Eq. (D-2) and Eq. (D-29). Nuts and washers shall be appropriate for the rod as set forth in Table 1 of this report.

² Stress area is minimum stress area applicable for either tension or shear.

 $^{^3}$ Tabulate value of ϕ complies with ACI 3 18-14 Section 17.3.3 (ACI 318-11 Section D.4.3) and applies when the load combinations of Section 1605.1 of the IBC or ACI318-14 Section 5.3 (ACI 318-11 Section 9.2) are used. When the load combinations in ACI 318 Appendix C are used, the appropriate value of ϕ shall be determined in accordance with ACI 318-11 D.4.4.

⁴ For limit state design as per CSA A23.3-14, Annex D, Material resistance factors (Φ) and resistance modification factors (R) in table shall be used.

TABLE 7a - STEEL DESIGN INFORMATION FOR FRACTIONAL STEEL US REINFORCING BAR^{1,2,3}

					Nor	ninal Rei	nforcing	Bar size		
	Characteristic	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 10
	Nominal bar diameter	da	inch	0.375	0.500	0.625	0.750	0.875	1.000	1.250
	Stress Area	Ase	in.2	0.11	0.20	0.31	0.44	0.60	0.79	1.27
	Strength Reduction Factor for Tension Steel Failure	Ø				0.7	5			
bar	Strength Reduction Shear for Tension Steel Failure	Ø		0.65						
ing	Tension Resistance of Carbon Steel	N _{Sa}	lb	6,600	12,000	18,600	26,400	36,000	47,400	76,200
Reinforcing	ASTM A615 Grade 40		(kN)	(29.4)	(53.4)	(82.7)	(117.4)	(160.1)	(210.8)	(339.0)
Rein	Tension Resistance of Carbon Steel	N _{Sa}	lb	9,900	18,000	27,900	39,600	54,000	71,100	114,300
-	ASTM A615 Grade 60		(kN)	(44.0)	(80.1)	(124.1)	(176.1)	(240.2)	(316.3)	(508.4)
	Shear Resistance of Carbon Steel	Vsa	lb	3,960	7,200	11,160	15,840	21,600	28,440	45,720
	ASTM A615 Grade 40		(kN)	(17.6)	(32.0)	(49.6)	(70.5)	(96.1)	(126.5)	(203.4)
	Shear Resistance of Carbon Steel	Vsa	lb	5,940	10,800	16,740	23,760	32,400	42,660	68,580
	ASTM A615 Grade 60		(kN)	(26.4)	(48.0)	(74.5)	(105.7)	(144.1)	(189.8)	(305.1)

For SI: 1 inch = 25.4 mm, 1 in. 2 = 645.16 mm 2 , 1 lb = 0.004448 kN

TABLE 7b - STEEL DESIGN STRENGTH FOR CAN GRADE 400 REINFORCING BAR^{1,2}

Rebar size	Area(mm2)	f _{uta} (MPa)	f_{ya} (MPa)	Tension N _{sar}	Shear V _{sar}	Seismic Shear V _{sar}
10M	100	540	400	36.72 kN 8,255 lb	17.44 kN 3,921 lb	12.73 kN 2,863 lb
15M	200	540	400	73.44 kN 16,511 lb	34.88 kN 7,843 lb	23.37 kN 5,255 lb
20M	300	540	400	110.16 kN 24,766 lb	52.33 kN 11,764 lb	35.06 kN 7,882 lb
25M	500	540	400	183.60 kN 41,277 lb	87.21 kN 19,607 lb	53.20 kN 11,960 lb
30M	700	540	400	257.04 kN 57,788 lb	122.09 kN 27,449 lb	56.16 kN 12,627 lb

¹ Tabulated value are calculated in accordance with CSA A23.3-14 Annex D (Factored Resistance Loads)

¹Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-14 Eq. (17.4.1.2) and Eq. (17.5.1.2b) or ACI 318-11 Eq. (D-2) and Eq. (D-29).

²Stress area is minimum stress area applicable for either tension or shear.

 $^{^3}$ Tabulate value of ϕ complies with ACI 318-14 Section 17.3.3 (ACI 318-11 Section D.4.3) and applies when the load combinations of Section 1605.1 of the IBC or ACI318-14 Section 5.3 (ACI 318-11 Section 9.2) are used. When the load combinations in ACI 318 Appendix C are used, the appropriate value of ϕ shall be determined in accordance with ACI 318-11 D.4.4.

² CSA G30.18 Grade 400 reinforcing bar are considered ductile steel elements.

TABLE 8 - FRACTIONAL THREADED ROD AND US REINFORCING BAR CONCRETE BREAKOUT STRENGTH DESIGN INFORMATION 1,2,3

Characteristic		Symbol	Units		Nom	ninal Anc	hor Elem	ent Diam	eter	
US Threaded Rod	Size	da	inch	3/8	1/2	5/8	3/4	7/8	1	1-1/4
	Drill Size	dhole	inch	1/2	9/16	3/4	7/8	1	1-1/8	1-3/8
US Re-bar	Size	da	inch	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 10
	Drill Size	d _{hole}	inch	9/16	5/8	3/4	1	1-1/8	1-1/4	1-5/8
Embedment Depth Range		h _{ef,min}	inch	2-3/8	2-3/4	3-1/8	3-1/2	4	4	5
	h _{ef,max}	inch	7-1/2	10	12-1/2	15	17-1/2	20	25	
Minimum Anchor Spacing		Smin	inch			0.5	· hef			
Minimum Edge Distance		Cmin	inch	0.5 · hef						
Minimum Concrete Thickness		h _{min}	inch			2	.0 · hef			
Critical Edge Distance		cac	-		See secti	on 3.2.6 c	of IAPMO	ER 490 re	oort	
Effectiveness Factor for Uncrac	ked	k _{c,uncr}					24			
Concrete, Breakout			(SI)				(10)			
Effectiveness Factor for Cracke	d Concrete,	k _{c,cr}					17			
Breakout			(SI)				(7.1)			
Strength Reduction Factor for 1	Tension,	a					0.65			
Concrete Failure Modes, Condit	Ø		0.65							
Strength Reduction Factor for S	Ø		0.70							
Concrete Failure Modes, Condit						5.70				

TABLE 9 - CANADIAN METRIC REINFORCING BAR CONCRETE STRENGTH DESIGN INFORMATION 1,2,3

Characteristic	Symbol	Units	Bar size						
			10M	15 M	20M	25M	30M		
Embedment Depth Range	h _{ef,min}	inch	2-3/8	3-1/8	3-1/2	4	5		
	h _{ef,max}	inch	7-1/2	12-1/2	15	20	25		
Minimum Anchor Spacing	Smin	inch			0.5 · h _{ef}				
Minimum Edge Distance	C _{min}	inch			0.5 ∙ <i>h_{ef}</i>				
Minimum Concrete Thickness	h _{min}	inch			2.0 · <i>hef</i>				
Critical Edge Distance	c _{ac-}			See section	3.2.6 of IAPM0	D ER 490 repor	t		
Effectiveness Factor for Uncracked	k _{c,uncr}				24				
Concrete, Breakout		(SI)	(10)						
Effectiveness Factor for Cracked Concrete,	kc,cr		17						
Breakout		(SI)	(7.1)						

For SI: 1 inch = 25.4 mm, 1 in.2 = 645.16 mm2, 1 lb = 0.004448 kN

¹ The tabulated value of Φ applies when the load combinations of Section 1605.2 of the IBC, or ACI 318-14 Section 5.3(ACI 318 Section 9.2), are used in accordance with ACI 318-14 Section 17.3.3 (ACI 318-11 Section D.4.3). If the load combinations of ACI 318 Appendix C are used, the appropriate value of shall be determined in accordance with ACI 318 D.4.4.

² The values of correspond to Condition B as described in Section 17.3.3 of ACI 318-14 (Section D.4.3 of ACI 318-11) for post-installation anchors designed using the load combination of IBC Section 1605.2. If the load combinations of ACI 318-11 Appendix C are used, the corresponding value of Φ shall be determined.
³ For limit state design as per CSA A23.3-14, Annex D, material resistance factors (Φ) and resistance modification factors (R) in table shall be used.

Condition B applies where supplemental reinforcement is not provided as per CAS A23.3-14, Clause D.5.3.c.

TABLE 10 - BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL STEEL THREADED RODS IN HAMMER DRILLED HOLES1,2,3,4,5,6,7

Danier Iv		Complete I	11-14-		Nomina	al Anchor I	Element Di	ameter	
Design in	formation	Symbol	Units	3/8"	1/2"	5/8"	3/4"	3/4" 1" 3-1/2 4 15 20 1070 890 (7.3) (6.1) 1000 700 (6.9) (4.8) 2 2 0.55 0.55 2 2 0.55 0.55 3 3 0.45 0.45 1 1 0.65 0.65 1 1 0.65 0.65 1 1	1-1/4"
Minimum Emb	edment Depth	h _{ef,min}	Inch	2-3/8	2-3/4	3-1/8	3-1/2	4	5
Maximum Emb	edment Depth	h _{ef,max}	Inch	7-1/2	10	12-1/2	15	20	25
Characteristic I in Uncracked C Sustained Tens		tk,sust,uncr	Psi (N/mm²)	1320 (9.1)	1237 (8.5)	1154 (7.9)			735 (5.0)
Characteristic I in Cracked Con Sustained Tens	_	t _{k,sust,cr}	Psi (N/mm²)	1000 (6.9)	1000 (6.9)	1000 (6.9)	1000 700 (6.9) (4.8) (7.00 (6.9) (4.8) (4.8) (7.00 (6.9) (4.8) (4.		620 (4.2)
	Dry Concrete	Anchor Category		1	1	2	2	2	3
Permissible		Фа	-	0.65	0.65	0.55	0.55	0.55	0.45
Installation Conditions,	Water- saturated	Anchor Category	-	1	2	2	2	2	2
Periodic Special	Concrete	φws	-	0.65	0.55	0.55	0.55	0.55	0.55
Inspection	Water-filled	Anchor Category	-	3	3	3	3	3	3
	Holes	фwf	-	0.45	0.45	0.45	0.45	0.45	0.45
	Dry Concrete	Anchor Category	-	1	1	1	1	1	1
Permissible		Фа	-	0.65	0.65	0.65	0.65	0.65	0.65
Installation Conditions, Continuous	Water- saturated	Anchor Category	-	1	1	1	1	1	1
	Concrete	φ _{ws}	-	0.65	0.65	0.65	0.65	0.65	0.65
Inspection Wate	Water-filled Holes	Anchor Category	-	1	1	1	1	1	1
	noies	Фwf	-	0.65	0.65	0.65	65 0.65 0.65 1 1 1		0.65
Reduction for S	Seismic Tension	α _{N.seis}	-	1.00	1.00	1.00	1.00	1.00	

¹ Bond strength values correspond to concrete compressive strength, f c = 2,500 psi (17.2 MPa). Bond strength values shall not be increased for concrete compressive strength.

² Maximum long term temperature: 122°F (+50°C); maximum short-term temperature: 176°F (+80°C).

³ Short-term elevated concrete temperatures are those that occur over brief intervals, e.g. transient or part of a regular cycle of heating and cooling, such as day-night temperature rise and fall. Long-term elevated concrete temperatures are roughly constant over significant periods of time.

⁴ The tabulated value of applies when load combinations of Section 1605.2 of the IBC or ACI 318-19, ACI 318-14 5.3, or ACI 318-11 9.2, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of shall be determined in accordance with ACI 318-11 D.4.4.

⁵ The values of correspond to Condition B as described in ACI 318-19 17.5.3, ACI 318-14 17.3.3, or ACI 318-11 D.4.3 for post-installed anchors designed using the load combinations of IBC Section 1605.2. If the load combinations in ACI 318-11 Appendix C are used, the corresponding value of shall be determined.

⁶ For load combinations consisting of short-term loads only such as wind, the bond strength values remain the same.

⁷ For limit state design as per CSA A23.3-14, Annex D, material resistance factors (Φ) and resistance modification factors (R) in table 5 shall be used. Condition B applies where supplemental reinforcement is not provided as per CAS A23.3-14, Clause D.5.3

TABLE 11 – BOND STRENGTH DESIGN INFORMATION FOR US AND CAN REINFORCING BARS IN HAMMER-DRILLED HOLES USED AS ANCHOR ELEMENTS 1,2,3,4,5,6,7,8

						Nominal Re	ebar Size¹		
Design Inf	ormation	Symbol	Units	#3 10M	#4	#5 15M	#6 20M	#8 25M	#10 30M
Minimum Emb	edment	h _{ef,min}	inch	2-3/8	3	3-1/4	4-1/2	6	7 ½
Maximum Em Depth	bedment	h _{ef,max}	inch	7-1/2	10	12-1/2	15	20	25
Strength in Ur Concrete for S	Characteristic Bond Strength in Uncracked Concrete for Sustained Tension Loading ^{3,4,7}		psi (N/mm²)	1262 (8.7)	1174 (8.1)	1087 (7.5)	1,000 (6.9)	700 (4.8)	575 (3.9)
Characteristic Bond Strength in Cracked Concrete for Sustained Tension Loading ^{3,4,7}		$t_{k,sust,cr}$	psi (N/mm²)	800 (5.5)	800 (5.5)	800 (5.5)	800 (5.5)	600 (4.1)	500 (3.4)
Dormissible	Dry Concrete	Anchor Category	-	1	1	2	2	3	3
Permissible Installation		Фа	-	0.65	0.65	0.55	0.55	0.45	0.45
Conditions, Periodic	Water- saturated	Anchor Category	-	1	2	2	2	2	2
Special	Concrete	фws	-	0.65	0.55	0.55	0.55	0.55	0.55
Inspection	Water-filled Holes	Anchor Category	-	3	3	3	3	3	3
	noies	ϕ_{wf}	-	0.45	0.45	0.45	0.45	0.45	0.45
Daniel a thi	Dry Concrete	Anchor Category	-	1	1	1	1	1	1
Permissible Installation	Concrete	Фа	-	0.65	0.65	0.65	0.65	0.65	0.65
Conditions,	Water- saturated	Anchor Category	-	1	1	1	1	1	1
Continuous	Concrete	ϕ_{ws}	-	0.65	0.65	0.65	0.65	0.65	0.65
Special Inspection	Water-filled Holes	Anchor Category	-	1	1	1	1	1	1
	110163	ϕ_{wf}	-	0.65	0.65	0.65	0.65	0.65	0.65
Reduction for Tension	Reduction for Seismic Tension		-	0.90	0.90	0.90	0.90	0.90	0.90

¹ Tabulated data for Canadian metric rebars are based on engineering assumptions of comparable US rebar data and not verified by actual testing.

 $^{^2}$ Bond strength values correspond to concrete compressive strengths, f' c = 2,500 psi (17.2 MPa). Bond strength values shall not be increased for concrete compressive strength.

³ Maximum long term temperature: 122°F (+50°C); maximum short-term temperature: 176°F (+80°C).

⁴ Short-term elevated concrete temperatures are those that occur over brief intervals, e.g. transient or part of a regular cycle of heating and cooling, such as day-night temperature rise and fall. Long-term elevated concrete temperatures are roughly constant over significant periods of time.

⁵ The tabulated value of Φ applies when load combinations of Section 1605.2 of the IBC or ACI 318-19, ACI 318-14 5.3, or ACI 318-11 9.2, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of shall be determined in accordance with ACI 318-11 D.4.4.

 $^{^6}$ The values of ϕ correspond to Condition B as described in ACI 318-19 17.5.3, ACI 318-14 17.3.3, or ACI 318-11 D.4.3 for post-installed anchors designed using the load combinations of IBC Section 1605.2. If the load combinations in ACI 318-11 Appendix C are used, the corresponding value of shall be determined.

⁷ For load combinations consisting of short-term loads only such as wind, the bond strength values remain the same.

⁸ For limit state design as per CSA A23.3-14, Annex D, material resistance factors (Φ) and resistance modification factors (R) in table 5 shall be used. Condition B applies where supplemental reinforcement is not provided as per CAS A23.3-14, Clause D.5.3

► STRENGTH DESIGN DATA TABLES AT SELECTED EMBEDMENT AND CONCRETE STRENGTH

TABLE 12 - DESIGN STRENGTH FOR FRACTIONAL THREADED RODS IN UNCRACKED CONCRETE 1,2,3,4,5,6,7

		f'c = 2,	500 psi	f'c = 4,0	000 psi	f'c = 6,	000 psi	f'c = 8	,000 psi
Anchor Dia. (inch)	h _{ef} (inch)	φN _n (lbf)	φV _n (lbf)						
	2-3/8	2,401	2,401	2,401	2,401	2,401	2,401	2,401	2,401
3/8	5	5,054	7,833	5,054	9,908	5,054	10,108	5,054	10,108
	7-1/2	7,581	14,390	7,581	15,162	7,581	15,162	7,581	15,162
	2-3/4	3,473	3,073	3,473	3,887	3,473	4,760	3,473	5,497
1/2	6-1/2	8,209	11,166	8,209	14,125	8,209	16,419	8,209	16,419
	10	12,630	21,308	12,630	25,260	12,630	25,260	12,630	25,260
	3-1/8	3,894	3,432	3,894	4,516	3,894	5,531	3,894	6,387
5/8	8	9,970	14,625	9,970	18,499	9,970	22,656	9,970	23,565
	12-1/2	15,578	28,564	15,578	36,130	15,578	36,820	15,578	36,820
	3-1/2	4,853	3,772	4,853	5,116	4,853	6,266	4,853	7,235
3/4	9	12,480	16,677	12,480	21,095	12,480	25,836	12,480	29,497
	15	20,799	35,883	20,799	45,389	20,799	49,162	20,799	49,162
	4	6,151	4,037	6,151	5,596	6,151	6,854	6,151	7,914
1	12	18,454	22,990	18,454	29,080	18,454	35,615	18,454	41,125
	20	30,756	49,466	30,756	62,570	30,756	72,696	30,756	72,696
	5	6,494	5,276	6,494	6,973	6,494	8,540	6,494	9,861
1-1/4	15	19,483	28,644	19,483	36,232	19,483	44,375	19,483	51,240
	25	32,471	61,632	32,471	77,959	32,471	93,806	32,471	93,806

¹ Tabulated values are calculated according to ACI318 for concrete cone and bond failures. Values must be compared to the relevant steel strength information with the lowest value controlling.

Values are calculated assuming Condition B - without supplementary reinforcement.
 Values are only valid for the temperature range of max. long-term temp.: 122°F; max. short-term temp.: 176°F for anchors installed in dry concrete of compressive strength shown with periodic special inspection.

⁴ Tabulated values are valid for single anchors without consideration for close edges or anchor spacing.

⁵ Strength reduction factors have been developed in accordance with ACI355.4 and ICC-ES AC308.

⁶ Calculated values assume sustained tension load acting on the anchor.
7 Calculated values are for illustrative purposes only. An engineer must conduct anchor design with experience in the design of fasteners and independently verified.

TABLE 13 - DESIGN STRENGTH FOR FRACTIONAL THREADED RODS IN CRACKED CONCRETE 1,2,3,4,5,6,7

		f'c = 2,!	f' _c = 2,500 psi		000 psi	f' _c = 6,	000 psi	f' _c = 8,000 psi	
Anchor Dia. (inch)	h _{ef} (inch)	φN _n (lbf)	φV _n (lbf)	φN _n (lbf)	φV _n (lbf)	φN _n (lbf)	φV _n (lbf)	φN _n (lbf)	φV _n (lbf)
	2-3/8	1,819	1,819	1,819	1,819	1,819	1,819	1,819	1,819
3/8	5	3,829	6,631	3,829	7,658	3,829	7,658	3,829	7,658
	7-1/2	5,743	11,486	5,743	11,486	5,743	11,486	5,743	11,486
	2-3/4	2,520	2,535	2,808	3,421	2,808	4,190	2,808	4,838
1/2	6-1/2	6,637	9,829	6,637	12,432	6,637	13,273	6,637	13,273
	10	10,210	18,755	10,210	20,420	10,210	20,420	10,210	20,420
	3-1/8	3,052	2,791	3,375	4,064	3,375	5,076	3,375	5,861
5/8	8	8,639	13,420	8,639	16,975	8,639	20,420	8,639	20,420
	12-1/2	13,499	26,211	13,499	31,907	13,499	31,907	13,499	31,907
	3-1/2	3,618	3,067	4,536	4,468	4,536	6,016	4,536	6,947
3/4	9	11,663	16,014	11,663	20,256	11,663	24,808	11,663	27,567
	15	19,439	34,456	19,439	43,583	19,439	45,946	19,439	45,946
	4	4,420	3,282	4,838	4,781	4,838	5,934	4,838	6,852
1	12	14,514	19,905	14,514	25,178	14,514	30,836	14,514	34,306
	20	24,190	42,828	24,190	54,174	24,190	57,177	24,190	57,177
	5	5,478	4,290	5,478	6,249	5,478	7,711	5,478	8,904
1-1/4	15	16,434	25,864	16,434	32,716	16,434	40,068	16,434	46,267
	25	27,391	55,651	27,391	70,393	27,391	79,129	27,391	79,129

¹ Tabulated values are calculated according to ACI318 for concrete cone and bond failures. Values must be compared to the relevant

steel strength information with the lowest value controlling.

² Values are calculated assuming Condition B - without supplementary reinforcement.

³ Values are only valid for the temperature range of max. long-term temp.: 122°F; max. short-term temp.: 176°F for anchors installed in dry concrete of compressive strength shown with periodic special inspection.

⁴ Tabulated values are valid for single anchors without consideration for close edges or anchor spacing.

⁵ Strength reduction factors have been developed in accordance with ACI355.4 and ICC-ES AC308.

⁶ Calculated values assume sustained tension load acting on the anchor.

⁷ Calculated values are for illustrative purposes only. An engineer must conduct anchor design with experience in the design of fasteners and independently verified.

TABLE 14 - BOND STRENGTH DESIGN INFORMATION FOR US AND CANADIAN METRIC REINFORCING BARS IN UNCRACKED CONCRETE USED AS ANCHOR ELEMENTS 1,2,3,4,5,6,7,8

			500 psi	f' _c = 4,000 psi		f' _c = 6,000 psi		f' _c = 8,000 psi	
Rebar Size	h _{ef} (inch)	φN _n (lbf)	φV _n (lbf)	φN _n (lbf)	φV _n (lbf)	φN _n (lbf)	φV _n (lbf)	φN _n (lbf)	φV _n (lbf)
	2-3/8	2,295	2,295	2,295	2,295	2,295	2,295	2,295	2,295
#3 10M	5	4,832	7,625	4,832	9,644	4,832	9,664	4,832	9,664
10111	7-1/2	7,248	14,007	7,248	14,496	7,248	14,496	7,248	14,496
	3	3,596	3,393	3,596	4,292	3,596	5,257	3,596	6,070
#4	6 -1/2	7,791	10,822	7,791	13,688	7,791	15,583	7,791	15,583
	10	11,987	20,650	11,987	23,973	11,987	23,973	11,987	23,973
	3-1/4	3,815	3,653	3,815	4,621	3,815	5,660	3,815	6,535
#5 15M	8	9,391	14,109	9,391	17,847	9,391	21,858	9,391	22,197
15101	12-1/2	14,673	27,557	14,673	34,683	14,673	34,683	14,673	34,683
	4 -1/2	5,855	5,662	5,855	7,161	5,855	8,771	5,855	10,128
#6 20M	9	11,710	16,014	11,710	20,256	11,710	24,808	11,710	27,678
20101	15	19,516	34,456	19,516	43,583	19,516	46,130	19,516	46,130
	4	7,257	7,037	7,257	8,902	7,257	10,902	7,257	12,589
#8 25M	12	14,514	19,905	14,514	25,178	14,514	30,836	14,514	34,306
25101	20	24,190	42,828	24,190	54,174	24,190	57,177	24,190	57,177
	5	8,504	8,276	8,504	10,468	8,504	12,821	8,504	14,804
#10 30M	15	17,009	23,408	17,009	29,609	17,009	36,263	17,009	40,203
JUIVI	25	28,348	50,365	28,348	63,707	28,348	67,004	28,348	67,004

¹ Tabulated data for Canadian metric rebars are based on engineering assumptions of comparable US rebar data and not verified by actual testing.

² Tabulated values are calculated according to ACI318 for concrete cone and bond failures. Values must be compared to the relevant rebar steel strength information with the lowest value controlling.

³ Values are calculated assuming Condition B - without supplementary reinforcement.

⁴ Values are only valid for the temperature range of max. long-term temp.: 122°F; max. short-term temp.: 176°F for anchors installed in dry concrete of compressive strength shown with periodic special inspection.

Tabulated values are valid for single anchors without consideration for close edges or anchor spacing.

⁶ Strength reduction factors have been developed in accordance with ACI355.4 and ICC-ES AC308.

⁷ Calculated values assume sustained tension load acting on the anchor.

⁸ Calculated values are for illustrative purposes only. An engineer must conduct anchor design with experience in the design of fasteners and independently verified.

TABLE 15 - BOND STRENGTH DESIGN INFORMATION FOR US AND CANADIAN METRIC REINFORCING BARS IN CRACKED CONCRETE USED AS ANCHOR ELEMENTS 1,2,3,4,5,6,7,8

		f'c = 2,500 psi		f'c = 4,000 psi		f'c = 6,000 psi		f'c = 8,000 psi	
Rebar Size	h _{ef} (inch)	φN _n (lbf)	φV _n (lbf)						
	2-3/8	1,455	1,455	1,455	1,455	1,455	1,455	1,455	1,455
#3 10M	5	3,063	5,800	3,063	6,126	3,063	6,126	3,063	6,126
10101	7-1/2	4,595	9,189	4,595	9,189	4,595	9,189	4,595	9,189
	3	2,450	2,696	2,450	3,410	2,450	4,176	2,450	4,822
#4	6-1/2	5,309	8,597	5,309	10,619	5,309	10,619	5,309	10,619
	10	8,168	16,336	8,168	16,336	8,168	16,336	8,168	16,336
	3-1/4	2,808	2,995	2,808	3,845	2,808	4,709	2,808	5,437
#5 15M	8	6,912	11,739	6,912	14,848	6,912	16,336	6,912	16,336
15101	12-1/2	10,799	22,927	10,799	25,525	10,799	25,525	10,799	25,525
	4-1/2	4,684	4,811	4,684	6,264	4,684	7,672	4,684	8,859
#6 20M	9	9,368	14,007	9,368	17,717	9,368	21,699	9,368	22,142
20101	15	15,613	30,138	15,613	36,904	15,613	36,904	15,613	36,904
	4	6,220	6,416	6,220	8,115	6,220	9,939	6,220	11,477
#8 25M	12	12,441	18,146	12,441	22,953	12,441	28,112	12,441	29,405
25.01	20	20,735	39,045	20,735	49,009	20,735	49,009	20,735	49,009
	5	8,099	8,037	8,099	10,166	8,099	12,451	8,099	14,377
#10 30M	15	16,199	22,732	16,199	28,754	16,199	35,217	16,199	38,288
JOIN	25	26,998	48,912	26,998	61,869	26,998	63,814	26,998	63,814

¹ Tabulated data for Canadian metric rebars are based on engineering assumptions of comparable US rebar data and not verified by actual testing.

² Tabulated values are calculated according to ACI318 for concrete cone and bond failures. Values must be compared to the relevant rebar steel strength information with the lowest value controlling.

³ Values are calculated assuming Condition B - without supplementary reinforcement.

⁴ Values are only valid for the temperature range of max. long-term temp.: 122°F; max. short-term temp.: 176°F for anchors installed in dry concrete of compressive strength shown with periodic special inspection.

⁵ Tabulated values are valid for single anchors without consideration for close edges or anchor spacing.

⁶ Strength reduction factors have been developed in accordance with ACI355.4 and ICC-ES AC308.

⁷ Calculated values assume sustained tension load acting on the anchor.

⁸ Calculated values are for illustrative purposes only. An engineer must conduct anchor design with experience in the design of fasteners and independently verified.

► INTERACTION OF TENSILE AND SHEAR FORCES

Interaction of Tensile and Shear forces as per IAPMO ER 490 Section 3.3.2

► ALLOWABLE STRESS DESIGN (ASD)

For anchors designed using load combinations calculated in accordance with IBC Section 1605.3 (Allowable Stress Design), allowable loads must be established as per IAPMO ER 490 Section 3.3.1

The requirements for member thickness, edge distance and spacing, as described in Table 4, must apply.

TABLE 17 - ALLOWABLE AND ULTIMATE LOAD DATA IN HOLLOW CONCRETE BLOCK FOR ILUSTRATIVE POURPOSES

Rod	Hole	Screen	Installation	Allowable Loads			Ultimate Loads				
Dia.	Dia.	Length	Torque	Tension		Shear		Tension		Shear	
inch	inch	inch	ft. lbs	lbf	kN	lbf	kN	lbf	kN	lbf	kN
3/8	1/2	3	10	360	1.60	803	3.56	1,800	8.00	3,200	14.23
		6									
1/2	5/8	3	15	490	2.18	1,005	4.47	2,450	10.90	4,020	17.88
		6									
5/8	3/4	6	20	490	2.18	1,238	5.50	2,450	10.90	4,950	22.04
		10									

Notes:

^{1./}All load values are for anchors installed in min. 1500 psi CMU units (using local material)

^{2./} Allowable loads are calculated using 5:1 safety factor

^{3./} Maximum two anchors shall be installed into the face of a hollow (non-grouted) CMU. Installation into mortar joints, flange and the web of the CMU is not allowed.

^{4./} Anchor installation must follow Ucan's installation instructions.

► CHEMICAL RESISTANCE

The chemical mortar has undergone extensive chemical resistance testing. The results are summarised in the table below.

Chemical Environment	Concentration	Result
Aqueous Solution Acetic Acid	10%	С
Acetone	100%	×
Aqueous Solution Aluminium Chloride	Saturated	√
Aqueous Solution Aluminium Nitrate	10%	√
Ammonia Solution	5%	×
Jet Fuel	100%	√
Benzene	100%	×
Benzoic Acid	Saturated	✓
Benzyl Alcohol	100%	×
Sodium Hypochlorite Solution	5 - 15%	×
Butyl Alcohol	100%	С
Calcium Sulphate Aqueous Solution	Saturated	√
Carbon Monoxide	Gas	✓
Carbon Tetrachloride	100%	С
Chlorine Water	Saturated	×
Chloro Benzene	100%	С
Citric Acid Aqueous Solution	Saturated	√
Cyclohexanol	100%	√
Diesel Fuel	100%	С
Diethylene Glycol	100%	✓
Ethanol	95%	×
Heptane	100%	С

Chemical Environment	Concentration	Result
Hexane	100%	С
	10%	✓
Hydrochloric Acid	15%	✓
	20%	С
Hydrogen Sulphide Gas	100%	✓
Linseed Oil	100%	✓
Lubricating Oil	100%	✓
Mineral Oil	100%	✓
Paraffin / Kerosene (Domestic)	100%	С
Phenol Aqueous Solution	1%	×
Phosphoric Acid	50%	✓
Potassium Hydroxide	10% / pH13	С
Sea Water	100%	С
Sulphur Dioxide Solution	10%	✓
Sulphur Dioxide (40°C)	5%	✓
Sulphuric Acid	10%	✓
Sulphunic Acid	30%	✓
Turpentine	100%	С
White Spirit	100%	✓
Xylene	100%	×

 $[\]checkmark$ = Resistant to 75°C with at least 80% of physical properties retained.

c = Contact only to a maximun of 25°C.

x = Not Resistant.